## Direct evidence for a ruthenium(IV) oxo complex-mediated oxidation of a hydroxamic acid in the presence of phosphine oxide donors

## Kevin R. Flower,<sup>a</sup> Andrew P. Lightfoot,<sup>b</sup> Hayley Wan<sup>a</sup> and Andrew Whiting<sup>\*a</sup>

<sup>a</sup> UMIST, Department of Chemistry, PO Box 88, Manchester, UK M60 1QD. E-mail: a.whiting@umist.ac.uk

<sup>b</sup> GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex, UK CM19 5AW

## Received (in Cambridge, UK) 17th July 2001, Accepted 6th August 2001 First published as an Advance Article on the web 3rd September 2001

Ruthenium(II) complexes can be used to oxidise *N*-Boc hydroxylamine in the presence of *tert*-butylhydroperoxide to the corresponding nitroso dienophile, which is trapped using cyclohexa-1,3-diene as the hetero-Diels–Alder adduct; direct evidence has been obtained for the intervention of a triphenylphosphine oxide-stabilised ruthenium(IV) oxocomplex as the catalytically active species.

The use of acyl nitroso compounds as efficient hetero dienophiles in the [4+2]-cycloaddition reaction with conjugated 1,3-dienes, to produce 3,6-dihydro-1,2-oxazines have been studied since the 1940s.<sup>1</sup> These types of hetero Diels–Alder reactions have been used as powerful synthetic tools in the formation of natural products such as polyhydroxylated alkaloids and their derivatives.<sup>2–5</sup>

The formation of acyl nitroso dienophiles is usually achieved *via* an *in situ* oxidation of a hydroxamic acid<sup>6</sup> and the unstable dienophiles (liable to dimerisation) are usually trapped by reaction with a diene *via* a hetero-Diels–Alder reaction.<sup>7</sup> Apart from the common periodate oxidation of hydroxamic acids, the only other oxidants reported are Swern and lead(vv) oxide-based oxidants.<sup>8</sup> In this communication, we report a new ruthen-ium(vv)-based method for the *in situ* generation of an acyl nitroso dienophile, identified from a combinatorial screening approach.<sup>†</sup>

A diversity-based screening strategy was used to search for new *in situ* oxidation methods for the generation of the Bocnitroso dienophile **2** for use in a subsequent hetero-Diels–Alder cycloaddition with cyclohexadiene to produce adduct **3** [eqn. (1)]. Of several metal complex–oxidant combinations screened (*i.e.* including complexes derived from manganese, chromium, osmium, ruthenium, titanium and vanadium and various

$$\stackrel{Oxidant}{\stackrel{\mathsf{BuO}}{\stackrel{\mathsf{NH}}{\stackrel{\mathsf{Catalyst}}{\stackrel{\mathsf{Catalyst}}{\stackrel{\mathsf{I}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{UO}}{\stackrel{\mathsf{I}}{\stackrel{\mathsf{I}}{\stackrel{\mathsf{I}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{I}}{\stackrel{\mathsf{I}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{I}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{I}}{\stackrel{\mathsf{I}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{I}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{I}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{I}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{I}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{I}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}}{\stackrel{\mathsf{O}}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}{\stackrel{\mathsf{O}}}{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}{\stackrel{\mathsf{O}}\\{\stackrel{\mathsf{O}}}{\stackrel{\mathsf{O}}\\{\stackrel{\mathsf{O}}}{\stackrel{\mathsf{O}}\\{\stackrel{\mathsf{O}}}{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}{\stackrel{\mathsf{O}}\\{\stackrel{\mathsf{O}}}{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}}\\{\stackrel{\mathsf{O}}\\$$

peroxide oxidants), [RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>4</sub>] and <sup>t</sup>BuOOH was found to be highly effective as shown by the screening results reported in Table 1, entries 1–3. Having established that  $[RuCl_2(PPh_3)_4]$ clearly catalysed the *in situ* oxidation of 1, we investigated the probable mechanism for this process. Since it is well known<sup>9</sup> that triphenylphosphine dissociates from the  $[RuCl_2(PPh_3)_4]$ complex in solution, we expected that the dissociated phosphine would be immediately oxidised by tert-butylhydroperoxide (TBHP) to give triphenylphosphine oxide. Indeed, <sup>31</sup>P NMR studies showed that not only is free triphenylphosphine oxidised, but after 10 min exposure to the TBHP, all triphenylphosphine had been oxidised, which suggests that the [RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>4</sub>] is a pre-catalyst. From these results, it was hypothesised that catalytic activity was the result of a ruthenium(II)–(IV) couple, where the ruthenium(IV) species was stabilised by the presence of triphenylphosphine oxide ligands. Further support for this hypothesis was obtained by subsequent experiments, as reported in Table 1.

www.rsc.org/chemcomm

municatio

Entry 10 (Table 1) shows that TBHP alone gives a slow background oxidation of 1, providing only 30% yield of adduct over 4 d, compared with 60% yield in 30 min using 10 mol% [RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>4</sub>] (entry 8, Table 1). Ruthenium(III) chloride (entry 9, Table 1) displays little more than background, i.e. TBHP-derived activity, even in the presence of OPPh<sub>3</sub>. In contrast, RuO<sub>2</sub> dissolves slowly in DCM in the presence of OPPh<sub>3</sub> and accomplishes a slow oxidation of the hydroxamic acid 1 in the absence of TBHP (19% over 4 d) when used stoichiometrically (entry 11, Table 1). However, when the RuO<sub>2</sub> + OPPh<sub>3</sub> mixture is used catalytically with 3 equiv. of TBHP, only slight enhancement over the background (TBHPderived) reaction occurs (compare entries 11 and 12, Table 1). This shows that although a RuO2-derived complex can effect the oxidation of 1 (entry 12, Table 1), it is not responsible for the catalytic activity observed in, for example, entry 8 (Table 1). It is therefore likely that a mixed ruthenium(IV) oxo-chloride complex stabilised by a phosphine oxide is responsible for the observed catalytic activity, as outlined in Scheme 1.

Table 1 Reaction conditions and yields for the *in-situ* generation of 2 and trapping as 4

| Entry | Catalyst/mol%                                      | Solvent                         | 'BuOOH/mol% | Temp./°C | Time/°C | Yield of $3^{a}(\%)$ |
|-------|----------------------------------------------------|---------------------------------|-------------|----------|---------|----------------------|
| 1     | $\operatorname{RuCl}_2(\operatorname{PPh})_4(10)$  | CH <sub>2</sub> Cl <sub>2</sub> | 0           | rt       | 72      | 0                    |
| 2     | $RuCl_2(PPh)_4$ (10)                               | $CH_2Cl_2$                      | 100         | -78      | 8       | 25                   |
| 3     | $RuCl_2(PPh)_4$ (10)                               | $CH_2Cl_2$                      | 100         | rt       | 24      | 57                   |
| 4     | $RuCl_2(PPh)_4$ (10)                               | $CH_2Cl_2$                      | 300         | rt       | 72      | 69                   |
| 5     | $RuCl_2(PPh)_4$ (10)                               | $CH_2Cl_2$                      | 500         | rt       | 72      | 43 <sup>d</sup>      |
| 6     | $\operatorname{RuCl}_2(\operatorname{PPh})_4(0.1)$ | $CH_2Cl_2$                      | 300         | rt       | 48      | 39                   |
| 7     | $\operatorname{RuCl}_2(\operatorname{PPh})_4(1.0)$ | $CH_2Cl_2$                      | 300         | rt       | 18      | 54                   |
| 8     | $RuCl_2(PPh)_4$ (10)                               | $CH_2Cl_2$                      | 300         | rt       | 0.5     | 60                   |
| 9     | RuCl <sub>3</sub>                                  | MeOH <sup>c</sup>               | 300         | rt       | 144     | 20                   |
| 10    | None                                               | $CH_2Cl_2$                      | 300         | rt       | 96      | 30                   |
| 11    | $RuCl_2(PPh)_4 (100) + OPPh_3 (400)^b$             | $CH_2Cl_2$                      | 0           | rt       | 96      | 19                   |
| 12    | $RuO_2(10) + OPPh_3(40)$                           | MeOH <sup>c</sup>               | 300         | rt       | 72      | 38                   |
|       |                                                    |                                 |             |          |         |                      |

<sup>*a*</sup> Isolated yields after silica gel chromatography. <sup>*b*</sup> No RuO<sub>2</sub> solubility until addition of OPPh<sub>3</sub>. <sup>*c*</sup> MeOH was used due to the insolubility of both RuCl<sub>3</sub> and RuO<sub>2</sub> in CH<sub>2</sub>Cl<sub>2</sub>. <sup>*d*</sup> Effervescence during addition of TBHP.



From the data presented, it is evident that the PPh<sub>3</sub> ligands of  $[RuCl_2(PPh_3)_4]$  are oxidised to OPPh<sub>3</sub> to give compound **4**, which is then further oxidised to give **5** by TBHP. The presence of an oxo-ligand is inferred from the unprecedented oxidation of the hydroxamic acid, facilitated by  $RuO_2$  in the presence of OPPh<sub>3</sub> (note: hydrated  $RuO_2$  is known to catalytically decompose  $H_2O_2$ , fully crystalline  $RuO_2$  does not<sup>10</sup>). The oxo-chloride-containing complex **5** then oxidises the hydroxamic acid **1** to give **6**, which contains an N-bound nitroso ligand. Evidence to support the presence of an N-bound nitroso ligand comes from the recent report<sup>11</sup> which clearly demonstrated this bonding mode in ruthenium complexes. The N-bound nitroso complex **6** then undergoes the cycloaddition reaction with cyclohexadiene to give adduct **3** and regenerate **4**. If the cycloaddition does take place directly on the N-bound nitroso

complex  $\mathbf{6}$ , the opportunity to carry out an asymmetric version of this reaction is a real possibility; we are actively pursuing this.

We thank EPSRC and GlaxoSmithKline for an industrial CASE studentship (to HW) (Ref. no. 9931546X).

## Notes and references

† *Typical procedure*: A solution of  $[RuCl_2(PPh_3)_4]$  (92 mg, 0.075 mmol) in DCM (10 ml), *N*-Boc hydroxamic acid **1** (100 mg, 0.751 mmol) and cyclohexa-1,3-diene (0.08 ml, 0.751 mmol) was treated with TBHP (slow, dropwise addition) (5–6 M solution in decane) (0.42 ml, 2.250 mmol). After 30 min, the reaction mixture was washed H<sub>2</sub>O (10 ml) (2×) and brine (10 ml), dried (MgSO<sub>4</sub>) and evaporated to give the crude cycloadduct as a brown oil (279 mg). Purification by silica gel chromatography (hexane–ethyl acetate, 6:1 as the eluent) gave cycloadduct **3**<sup>12</sup> as a pale yellow oil (100 mg, 63%).

- 1 G. W. Kirby, Chem. Soc. Rev., 1977, 6, 1.
- 2 O. Wichterle, Coll. Czech. Chem. Commun., 1947, 12, 292.
- 3 Y. A. Arbuzov, Dokl. Akad. Nauk S.S.S.R., 1948, 60, 993.
- 4 J. Hamer, A. Ahmad and R. E. Holliday, J. Org. Chem., 1963, 28, 3034.
- 5 G. Kresze, J. Firl, H. Zimmer and U. Wollnik, *Tetrahedron*, 1964, 20, 1605.
- 6 G. W. Kirby, J. W. M. Mackinnon and R. P. Sharma, *Tetrahedron Lett.*, 1977, 215.
- 7 G. W. Kirby and J. G. Sweeny, J. Chem. Soc., Chem. Commun., 1973, 704.
- 8 L. H. Dao, J. M. Dust, D. Mackay and K. N. Watson, Can. J. Chem., 1979, 57, 1712.
- 9 (a) R. H. Crabtree, Chem. Commun., 1999, 1611; (b) T. A. Stephenson and G. Wilkinson, J. Inorg. Nucl. Chem., 1966, 28, 945.
- 10 'The Chemistry of Ruthenium', eds. E. A. Seddon and K. R. Seddon, Elsevier, Oxford, 1984.
- 11 J.-L. Liang, J.-S. Huang, Z.-Y. Zhou, K.-K. Cheung and C.-M. Che, *Chem. Eur. J.*, 2001, **7**, 2306.
- 12 D. Zhang, C. Süling and M. J. Miller, J. Org. Chem., 1998, 63, 885.